Differentiate arcsin(2x) using the fact that 2x=sin(y)

Differentiate implicitly on both sides with respect to x to get: 2=cos(y) • (dy/dx). Divide by cos(y) on both sides to get: dy/dx=2/cos(y). Use the trigonometric identity cos^2(y)+sin^2(y)=1 rearranged to cos(y) = [1-sin^2(y)]^1/2 and substitute this into dy/dx= 2/cos(y) to get dy/dx=2/[1-sin^2(y)]^1/2. Notice that 2x=sin(y) as given initially and substitute to get dy/dx=2/[1-(2x)^2]^1/2. Final answer is d/dx (arcsin(2x)) = 2/(1-4x^2)^1/2

LO
Answered by Louise O. Further Mathematics tutor

2638 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Define tanh(t) in terms of exponentials


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences