Solve 8^x + 4 = 4^x + 2^(x+2).

Firstly, we want to notice that this question only involves powers of 2^x, ie.
(2^x)^3 + 4 = (2^x)^2 + 4(2^x)
so we can use the substitution u = 2^x to give
u^3 - u^2 - 4u + 4 = 0
The problem (at least at this intermediate stage) has reduced to solving a cubic equation in the variable u. u = 1 satisfies this equation, so by the factor theorem, we know that u - 1 is a factor. Then by equating coefficients or polynomial long division, we can write the equation as
(u - 1)(u^2 - 4) = 0
or equivalently
(u - 1)(u - 2)(u +2) = 0
Substituting back in for x, we have
u = 1 => 2^x = 1 => x = 0
u = 2 => 2^x = 2 => x = 1
u = -2 => 2^x = -2 which has no real solutions.
Hence, the solutions to the original equation are x = 0, 1.

SA
Answered by Sachin A. MAT tutor

1450 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

How many 0's are at the end of 100! (100 factorial)?


We define the digit sum of a non-negative integer to be the sum of its digits. For example, the digit sum of 123 is 1 + 2 + 3 = 6. Let n be a positive integer with n < 10. How many positive integers less than 1000 have digit sum equal to n?


What is the square root of the imaginary number i?


How do you solve hard integration questions using information you know


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning