How to integrate ln(x)?

You need to use a clever trick for this! Write ln(x) as 1ln(x), and use integration by parts:u=ln(x) v'=1u'=1/x v=xThen applying the formula we obtain∫ln(x)dx = xln(x) - ∫[(1/x)x] dx = = xln(x) - ∫1 dx = = xln(x) - x + C = x(ln(x) - 1) + CAnd if we have some data we can work out the constant of integration C.

KW
Answered by Krzysztof W. Further Mathematics tutor

3041 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


How do you find the general solution of a second order differential equation?


What are the different forms of complex numbers and how do you convert between them?


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning