A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.

Let's first find the equilibrium position of the spring. When the mass is first attached the spring will oscillate like a simple harmonic oscillator, in the real world the oscillator will eventually settle and this position will be the new equilibrium position of the oscillator. Let's make the velocity 0 and resolve Newton's Second Law vertically (N2L from here on in): For a spring F=kx, N2L vertically kx=mg. Yielding x=mg/k where g is the local acceleration due to gravity.
For the Equation of Motion, resolve N2L while the oscillator is in motion. To make life easier lets substitute x = x0+y where x0 is the new equilibrium position as this way we don't need to worry about any constants and can have y oscillate around y=0. Now: ma=-kx where a = d^2x/dt^2. Solving this differential equation we get y = Acos(wt) + Bsin(wt) where we find that w^2 = k/m. Knowing that w=2pif we can work out the frequency of these oscillations.

BP
Answered by Benedek P. Further Mathematics tutor

2278 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences