What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

2739 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An ideal gas undergoes a transformation in which both its pressure and volume double. How many times does the root mean square speed of the gas molecules increase?


(ii) Describe and explain how the horizontal component of the water jet varies from point X to point Y. (2 marks)


Why does a single slit diffraction pattern occur?


How does conservation of momentum work when at least one of the bodies in the problem changes mass?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences