What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

3212 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Steel has a density of 8030kg/m^3. Show that a steel ball with a diameter of 5cm weighs approximately 5N


A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)


What is the escape velocity of an object leaving a planet mass M, radius R?


Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning