What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

2795 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


Is the excitation and de-excitation of an electron from the ground state (of an atom) due to the collision of another particle (e.g. electron) an elastic collision or an inelastic collision.


Where does the formula for gravitational potential come from? Why the minus sign?


When light above the threshold frequency of a metal is shone on the metal, photoelectrons are emitted. If the power of the light halves, are the maximum kinetic energy of the photoelectrons and/or the number of photoelectrons altered, and if so, how?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences