Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.

First of all, replace sinxcosx with 1/2 sin2x. Then you should let U=1/2 Sin2x and replace that in the formula. If y=arctan(U), then U=tany. work out dU/dy which is Sec2y. Using the trigonometric identity sin2y + cos2y= 1, sec2y= 1+tan2y. The differential now becomes 1+U2. Flip the equation around to give dy/dU = 1/(1+U2).to get the differential in terms of y and x first replace U2 with 1/4 sin22x. using chain rule, dy/dx=dy/du * du/dx. du/dx = cos2x, so combining the two equations dy/dx = cos2x/(1 + 1/4 sin2x) which can be simplified to dy/dx = 4cos2x/(4 + sin22x)

JP
Answered by James P. Further Mathematics tutor

2345 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


Find the square root of complex number 3 + 4i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences