A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.

Since we are told that the line l is perpendicular to the line PQ, we first need to find out the gradient of PQ.
To do this, it is easiest to find out the co-ordinates of points P and Q in terms of their cartesian co-ordinates.
At P, t = 1/4, and since P is a point on our hyperbola, we can substitute this into the equation x = 4t to see that x = 4 * 1/4 = 1. Similarly, y = 4 / t = 4 / (1/4) = 16. Therefore, P is at (1, 16). We use exactly the same method for point Q, this time using t = 2 to obtain the co-ordinates for Q (8, 2).
We can then calculate the gradient of PQ by using the formula gradient = (y2 - y1) / (x2 - x1) = (2 - 16) / (8 - 1) = -2
Hence the gradient of our line l is -1 / -2 = 1/2.
Since the question tells us that our line goes through the origin, we know that our intercept value must be zero, so the equation of our line is y = mx + c = 1/2x + 0 = 1/2 x

ZE
Answered by Zelie E. Further Mathematics tutor

2301 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find arsinh(x) in terms of x


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


How to multiply and divide by complex numbers


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences