Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.

okay so A is a 2x2 matrix.for it to be singular its determinate has to equal 0.a 2x2 matrix's determinate is equal to m1,1m2,2 - m1,2m2,1for this example:det(A) = (1+k)(1-k) - (k)(k) = 0multiplying out the brackets(1+k)(1-k) becomes 1-k+k-k2 = 1-k2(k)(k) becomes k2so det(A)= 1-k2-k2 = 1-2k2 = 0solving for k1=2k21/2 = k2so k = +/-SQRT(1/2)

KY
Answered by Kieran Y. Further Mathematics tutor

3854 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


What are Taylor series used for?


Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning