Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.

okay so A is a 2x2 matrix.for it to be singular its determinate has to equal 0.a 2x2 matrix's determinate is equal to m1,1m2,2 - m1,2m2,1for this example:det(A) = (1+k)(1-k) - (k)(k) = 0multiplying out the brackets(1+k)(1-k) becomes 1-k+k-k2 = 1-k2(k)(k) becomes k2so det(A)= 1-k2-k2 = 1-2k2 = 0solving for k1=2k21/2 = k2so k = +/-SQRT(1/2)

KY
Answered by Kieran Y. Further Mathematics tutor

2955 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences