People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.

Question 1 : Find the acceleration of the lift.Implementing Newton's Second Law we have : F net =Mα lift --->T-F A -F B -Mg =Mα lift ---> α lift =( T-F A -F B -Mg )/M (1)Substituting the relevant values of the forces given by the question we get that α lift = 2.75 m/s 2 ( where g= 9.81 m/s 2 )Question 2 : Find the masses of people A and B.Normally most students would equal the reading of the scale with the multiplication if the mass of the person with gravitational acceleration. This is not the case!! The person also has an upward acceleration equal to the lift's.Again by Newton's second Law we obtain : Person A F A - m A g = m A α lift ---> m A = F A /(g + α lift ) ----> m A = 57.3 kgPerson B F B - m B *g = m A lift ---> m B = F B /(g + α lift ) ----> m B =39.8 kgThis problem although not advanced or complicated can lead to misleading results if students have learned to work mechanically based on solved problems they have seen. As i stated in my description my goal is to avoid that and develop an analytical thinking of the students in order to spot tricky questions like this. Otherwise they would think their solution provided is correct.

GN
Answered by Geri N. Physics tutor

2054 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


Given the rate of thermal energy transfer is 2.7kW, the volume of the water tank is 4.5m^3, the water is at a temperature of 28oC, density of water is 1000kgm-3 & c=4200Jkg-1K-1. Calculate the rise in water temperature that the heater could produce in 1hr


A stone is thrown horizontally at 5m/s from a platform 10m above ground. Find time till impact with ground.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning