A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G

This question tests the students' understanding on conservation of energy, gravitational potential and algebraic manipulation.The first step is identifying that the principle to use is the conservation of energy:K.E. initial + P.E. intial =K.E. final + P.E. final .When you substitute in the expressions for the energies this becomes: 1/2 m v2 -GMm/R = 1/2 m v2final -GMm/rfinal. Another key step in solving it, is recognising that the maximum height occurs at the point where vfinal =0. The rest is just rearranging so that you have r in terms of v,G,M,R until you reach: r =2GMR/(2GM-Rv2). From this expression, a lot of useful information can be gathered, for example one can derive the escape velocity of a body from earth

CV
Answered by Constantinos V. Physics tutor

1520 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.


Give a brief description of the Big Bang and describe its link to cosmic microwave background radiation.


Sphere A (mass m), moving with speed 3v, collides with sphere B (mass 2m) which is moving in the opposite direction with speed v. The two spheres then combine, calculate the resulting velocity of the combined spheres.


Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences