A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G

This question tests the students' understanding on conservation of energy, gravitational potential and algebraic manipulation.The first step is identifying that the principle to use is the conservation of energy:K.E. initial + P.E. intial =K.E. final + P.E. final .When you substitute in the expressions for the energies this becomes: 1/2 m v2 -GMm/R = 1/2 m v2final -GMm/rfinal. Another key step in solving it, is recognising that the maximum height occurs at the point where vfinal =0. The rest is just rearranging so that you have r in terms of v,G,M,R until you reach: r =2GMR/(2GM-Rv2). From this expression, a lot of useful information can be gathered, for example one can derive the escape velocity of a body from earth

CV
Answered by Constantinos V. Physics tutor

1630 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?


Explain how a standing wave is set up on a string fixed at both ends.


A 100g mass is on a circular turntable spinning at 78 revolutions per minute. The maximum frictional force between the mass and turntable is 0.50N. Find the maximum distance from the center of the turntable at which the mass would stay on the turntable.


Explain why for heavy nuclei there is imbalance in the number of protons and neutrons. Give reference to the range and particle type of the forces that influence this imbalance.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning