A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G

This question tests the students' understanding on conservation of energy, gravitational potential and algebraic manipulation.The first step is identifying that the principle to use is the conservation of energy:K.E. initial + P.E. intial =K.E. final + P.E. final .When you substitute in the expressions for the energies this becomes: 1/2 m v2 -GMm/R = 1/2 m v2final -GMm/rfinal. Another key step in solving it, is recognising that the maximum height occurs at the point where vfinal =0. The rest is just rearranging so that you have r in terms of v,G,M,R until you reach: r =2GMR/(2GM-Rv2). From this expression, a lot of useful information can be gathered, for example one can derive the escape velocity of a body from earth

Answered by Constantinos V. Physics tutor

1105 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between accuracy and precision?


How and why does a geostationary satellite stay above the same point on the Earths surface?


A sample of pure gold has a density of 19300 kgm^-3. If the density of a gold nucleus is 1.47x10^17Kgm^-3, discuss what this implies about the structure of the gold atom. [4 marks]


A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy