Prove De Moivre's by induction for the positive integers

First we check the formula for our first case, n=1 where (cosx + isinx)n =cosnx + isinnx (cosx + isinx)1 = cos(1x) + isin(1x) - holds true for n=1 next we assume true for our case n=k(cosx + isinx)k = coskx + isinkxnext we show that if the case for n=k is true, then the case n=k+1 is true.by inputting n=k+1 we get (cosx+isinx)(k+1)=(cosx+isinx)(cosx+isinx)know as we assumed for n=k ,this equals (cosx+isinx)(coskx+isinkx)this gives cosxcoskx +icosxsinkx +isinxcoskx -sinxsinkxsimplifying to (coskxcosx -sinxsinkx) + i(cosxsinkx + sinxcoskx)finally through the compound angle formulae we reach our desired result: (cosx+isinx)k+1 = cos((k+1)x) + isin((k+1)x) conclusion: If n=k holds true, then n=k+1 holds true. Since n=1 holds true we have now shown that De Moivre's theorem holds true for all positive integers.

HS
Answered by Harry S. Further Mathematics tutor

3807 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


Can you express 3 + 4j in polar form?


Could you explain to me how proof by induction works?


Find the integral of f(x)= x^3 + 2x^2 + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning