Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0

Set up the auxiliary equation by letting (dy/dx) = m
So we have: m2 + 3m + 2 = 0
Solve for m and we get: (m+1)(m+2) = 0Therefore, m1=-1 and m2=-2
Now we see we have 2 different real numbers as the solutions to our auxiliary equation. So employ the GS in the form of: y = Aem1t + Bem2t
Therefore we have the GS to our 2nd ODE given above to be: y = Ae-t + Be-2t

IG
Answered by Isaac G. Further Mathematics tutor

2188 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


Are we able to represent linear matrix transformations with complex numbers?


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


How do I find the vector/cross product of two three-dimensional vectors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning