Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.

Step 1: find the asymptotesThere are two kinds of asymptotes we look for: vertical and horizontal.The vertical ones happen when y goes to negative or positive infinity, which is when the denominator of the fraction is 0. Here, the denominator of the fraction is 0 when x = 2, and x = -1.The horizontal ones happen when x goes to negative or positive infinity. We can find out the value of y by looking at what the fraction tends to when x goes to infinity or negative infinity. We can make arguments like this: 3x+2 is approximately equal to 3x when x is large, and x-3, x-2, x+1 are approximately equal to x for the same reason. So we can put that into the fraction, and say that y is approximately equal to 3x * x / x * x = 3 when x is negative/positive infinity. So the horizontal asymptote is at y = 3.Overall answer to step 1: x = 2, x = -1, y = 3Step 2: Coordinates of the points where the curve touches the axisThe curve touches the axis when x=0 or y=0.When x=0, y = (2)(-3)/(-2)(+1) = -6 / -2 = 3. So the coordinate is (0,3).When y=0, 0 = (3x+2)(x-3)/(x-2)(x+1). Multiplying both sides by (x-2)(x+1), we seethat 0 = (3x+2)(x-3). We can expand the brackets to find that this is just a quadratic equation: 0 = 3x^2 - 7x - 6. Solving this, we get x = 3 and x = -2/3. So the coordinates are (3, 0), (-2/3, 0). Overall answer to step 2: (0,3), (3,0), (-2/3, 0)

MT
Answered by Meg T. Further Mathematics tutor

3551 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that sum(k) from 0 to n is n(n+1)/2, by induction


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning