Prove that sum(k) from 0 to n is n(n+1)/2, by induction

Proof by induction involves making an assumption, and using that assumption to prove that the consecutive case follows the pattern. 

The key to this is realising that most questions follow the same structure, usually involving rearranging algebra. Remember to try to see where you can use the induction step, and how you can rearrange it to make it clear how the induction step fits in. Just keep calm, write out every step carefully, and the answers will follow.

Base case: for k=1, sum(0+1) = 1 and 1(1+1)/2 = 1, and we have shown that the claim is true in this case.

Hypothesis: suppose the claim is true for k=n

Induction step: for k=n+1 , take the sum:

sum(k) [0--n+1] = sum(k)[0--n] + n+1 = n(n+1)/2 +n+1 = (n2+n)/2 + (2n+2)/2 = (n2+3n+2)/2

= (n+1)(n+2)/2 and we have shown the claim

Conclusion: As the claim is true for 0 and 1, and we have shown it to be true if it is true for n=k, by induction we have proved it true for all n in the natural numbers.

NR
Answered by Nadine R. Further Mathematics tutor

7573 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I solve x^2 + x - 6 > 0 ?


Can you show me how to solve first order differential equations using the integrating factor method?


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences