Prove that sum(k) from 0 to n is n(n+1)/2, by induction

Proof by induction involves making an assumption, and using that assumption to prove that the consecutive case follows the pattern. 

The key to this is realising that most questions follow the same structure, usually involving rearranging algebra. Remember to try to see where you can use the induction step, and how you can rearrange it to make it clear how the induction step fits in. Just keep calm, write out every step carefully, and the answers will follow.

Base case: for k=1, sum(0+1) = 1 and 1(1+1)/2 = 1, and we have shown that the claim is true in this case.

Hypothesis: suppose the claim is true for k=n

Induction step: for k=n+1 , take the sum:

sum(k) [0--n+1] = sum(k)[0--n] + n+1 = n(n+1)/2 +n+1 = (n2+n)/2 + (2n+2)/2 = (n2+3n+2)/2

= (n+1)(n+2)/2 and we have shown the claim

Conclusion: As the claim is true for 0 and 1, and we have shown it to be true if it is true for n=k, by induction we have proved it true for all n in the natural numbers.

NR
Answered by Nadine R. Further Mathematics tutor

7520 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I integrate (sin x)^6?


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Find arsinh(x) in terms of x


Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences