Prove that sum(k) from 0 to n is n(n+1)/2, by induction

Proof by induction involves making an assumption, and using that assumption to prove that the consecutive case follows the pattern. 

The key to this is realising that most questions follow the same structure, usually involving rearranging algebra. Remember to try to see where you can use the induction step, and how you can rearrange it to make it clear how the induction step fits in. Just keep calm, write out every step carefully, and the answers will follow.

Base case: for k=1, sum(0+1) = 1 and 1(1+1)/2 = 1, and we have shown that the claim is true in this case.

Hypothesis: suppose the claim is true for k=n

Induction step: for k=n+1 , take the sum:

sum(k) [0--n+1] = sum(k)[0--n] + n+1 = n(n+1)/2 +n+1 = (n2+n)/2 + (2n+2)/2 = (n2+3n+2)/2

= (n+1)(n+2)/2 and we have shown the claim

Conclusion: As the claim is true for 0 and 1, and we have shown it to be true if it is true for n=k, by induction we have proved it true for all n in the natural numbers.

Related Further Mathematics A Level answers

All answers ▸

How do I express complex numbers in the form reiθ?


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


solve the 1st order differential equation 2y+(x*dy/dx)=x^3


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy