A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).

Resolve the reaction force caused by the weight, mg, of the particle horizontally and vertically. Rsin(theta) = mg Rcos(theta)=m(CP)w^2 where w = root (3g/8r).thus tan(theta) = 8r/3CPconsider the right angled triangle OCP and find an expression for tan(theta) in terms of it's sides, hence tan(theta) = OC/CP. Thus, OC/CP = 8r/3CP and therefore Distance OC = 8r/3 (diagram and whiteboard working attached during interview)

EB
Answered by Ed B. Further Mathematics tutor

2364 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Express the complex number (1+i)/(1-i) in the form x+iy


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning