A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).

Resolve the reaction force caused by the weight, mg, of the particle horizontally and vertically. Rsin(theta) = mg Rcos(theta)=m(CP)w^2 where w = root (3g/8r).thus tan(theta) = 8r/3CPconsider the right angled triangle OCP and find an expression for tan(theta) in terms of it's sides, hence tan(theta) = OC/CP. Thus, OC/CP = 8r/3CP and therefore Distance OC = 8r/3 (diagram and whiteboard working attached during interview)

EB
Answered by Ed B. Further Mathematics tutor

2501 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Evaluate (1 + i)^12


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning