What is the maximum speed of an electron emitted from a metal surface with a threshold frequency of 5.706*10^(14) by light with a wavelength of 350nm?

In order to determine the maximum speed of an emitted electron, we must first find it's kinetic energy from the energy of an incident photon and the work function of the metal surface (the minimum energy required for an electron to escape the metal surface). These are related using the equation below. E(total energy provided by photon)=Φ+EkThe energy of a single photon can be calculated from Planck's Equation, E=hf, where E is energy, h is Planck's constant (6.6310^(-34)Js) and f is frequency. In this case we don't have the frequency of the incident, but the wavelength instead, therefore in order to obtain the frequency the equation f=c/lambda can be used, where f is frequency, c is the speed of light (3.0010^(8)m/s) and lambda is the wavelength.Then use the given values to find the energy of the photon. => f=3.0010^(8)/(35010^(-9))=8.5710^(14) Hz=> E=6.6310^(-34)8.5710^(14) = 5.6810^(-19) JThe work function, Φ, can also be calculated from the threshold frequency using Planck's equation. => Φ=6.6310^(-34)5.70610^(14)= 3.7810^(-19) JTherefore Ek(max)=E-Φ= (5.68-3.78)10^(-19) J = 1.9010^(-19) JRearranging Ek(max)=(1/2)mv2 for v, gives vmax=(2Ek(max)/m)^(1/2) = 6.4610^(5) m/s

MG
Answered by Mattea G. Physics tutor

11512 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the threshold frequency for a metal with a work function of 3eV


A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.


The flow of water in a pipe is turbulent. Define turbulent flow.


An infared wave has a wavelength of 1.5 x10^–6 m. The speed of this wave is 2.2 × 10^8 m/s. Calculate the frequency of the wave. Give your answer in standard form and to 2 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences