What is the maximum speed of an electron emitted from a metal surface with a threshold frequency of 5.706*10^(14) by light with a wavelength of 350nm?

In order to determine the maximum speed of an emitted electron, we must first find it's kinetic energy from the energy of an incident photon and the work function of the metal surface (the minimum energy required for an electron to escape the metal surface). These are related using the equation below. E(total energy provided by photon)=Φ+EkThe energy of a single photon can be calculated from Planck's Equation, E=hf, where E is energy, h is Planck's constant (6.6310^(-34)Js) and f is frequency. In this case we don't have the frequency of the incident, but the wavelength instead, therefore in order to obtain the frequency the equation f=c/lambda can be used, where f is frequency, c is the speed of light (3.0010^(8)m/s) and lambda is the wavelength.Then use the given values to find the energy of the photon. => f=3.0010^(8)/(35010^(-9))=8.5710^(14) Hz=> E=6.6310^(-34)8.5710^(14) = 5.6810^(-19) JThe work function, Φ, can also be calculated from the threshold frequency using Planck's equation. => Φ=6.6310^(-34)5.70610^(14)= 3.7810^(-19) JTherefore Ek(max)=E-Φ= (5.68-3.78)10^(-19) J = 1.9010^(-19) JRearranging Ek(max)=(1/2)mv2 for v, gives vmax=(2Ek(max)/m)^(1/2) = 6.4610^(5) m/s

MG
Answered by Mattea G. Physics tutor

11607 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What distance is one Parsec


A sigma0 particle with mass 1193 MeV/c^2 decays into a lambda0 particle with mass 1116 MeV/c^2 a photon. Find the energy and momentum of the photon, assuming that the kinetic energy of the lambda0 particle is negligible.


Why is it important that the baryon and lepton numbers of an interaction are conserved?


Explain why a transformer only works with an alternating current and doesn't with a direct current.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences