Derive an expression to show that for satellites in a circular orbit T² ∝ r ³ where T is the period of orbit and r is the radius of the orbit.

For an object to stay in a steady orbit; F=mv2/r where: F is the force on the object towards the centre of the orbit, m is the mass of the object, v is the radial velocity of the object, and r is the radius of the orbit.In the case of a satellite orbiting a planet, all of F is provided by the gravitational force acting on the satellite due to the planet/moon/star. This force is given by Newton's law of gravitation:F = GMm/r2where F is the gravitational force, G is the gravitational constant; 6.67 x 10 -11 Nm2kg-2, M is the mass of the planet/moon/star, m is the mass of the satellite, and r is the distance between the planet/moon/star and the satellite.We can therefore equate these two forces, as F = F, giving;GMm/r2 = mv2/rWe can multiply both sides by r and divide both sides by m to give;GM/r = v2Finally, we need the time period, T, not the velocity, v, therefore we can use v = s/t. In this case, s is the circumference of orbit = 2πr, and t is T, the time period of the orbit. We can write:v = 2πr/TSubstituting this into before gives:GM/r = (2πr/T)2Expanding the brackets, multiplying both sides by T, and multiplying both sides by r gives;GMT2 = 4π2r3

JM
Answered by James M. Physics tutor

5433 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


What is the difference between linearly, directly and inversely proportional relationships?


State what is meant by resonance and provide some examples where it is crucial.


Describe one technique you could use to measure the threshold voltage for LEDs.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences