An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?

F = qv x B = qvB sin(O). q is the electrons charge = 1.6x10-19 C. v is the electrons speed = 2x105 ms-1 . B is the magnetic field strength = 0.5 T. O is the angle between the electrons velocity vector and the magnetic field vector. Velocity is perpendicular to field so O = 90 degrees, sin(90)=1 therefore: F=qvB. Plugging the values into the equation we have :F= 1.6x10-19 x 2x105 x 0.5 Cms-1 T Therefore F=1.6x10-14 N

AB
Answered by Angus B. Physics tutor

1997 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If one proton is travelling through space at 0.3c, what is it's kinetic energy in MeV?


Where does the simple harmonic motion equation come from and what does it mean?


Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?


Define the terms "acceleration" and "displacement". Explain simple harmonic motion with reference to both of these quantities.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning