An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?

F = qv x B = qvB sin(O). q is the electrons charge = 1.6x10-19 C. v is the electrons speed = 2x105 ms-1 . B is the magnetic field strength = 0.5 T. O is the angle between the electrons velocity vector and the magnetic field vector. Velocity is perpendicular to field so O = 90 degrees, sin(90)=1 therefore: F=qvB. Plugging the values into the equation we have :F= 1.6x10-19 x 2x105 x 0.5 Cms-1 T Therefore F=1.6x10-14 N

AB
Answered by Angus B. Physics tutor

1958 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

I dont really understand the Rutherford experiment


How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


2 resistors of resistances 150 ohms and 5000 ohms respectively are in series with each other. They both are also in parallel with a 1000 ohm resistor. What is the total resistance?


A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning