An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?

F = qv x B = qvB sin(O). q is the electrons charge = 1.6x10-19 C. v is the electrons speed = 2x105 ms-1 . B is the magnetic field strength = 0.5 T. O is the angle between the electrons velocity vector and the magnetic field vector. Velocity is perpendicular to field so O = 90 degrees, sin(90)=1 therefore: F=qvB. Plugging the values into the equation we have :F= 1.6x10-19 x 2x105 x 0.5 Cms-1 T Therefore F=1.6x10-14 N

AB
Answered by Angus B. Physics tutor

2194 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define the work function of a metal


State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning