explain the eigenvalue problem

The eigenvalue problem is how we can find non-trivial solutions where x does not equal zero to the matrix equation;AX=LX (L=lambda)Values of the scalar L for which non-trivial solutions exist are called eigenvalues and the corresponding solutions of X where X does not equal 0 are called eigenvectors. A is an nn matrix.X is an n1 column vector.
We can write the above matrix equation, which represents the set of simultaneous equations as;(LI-A)X=0Where I is the identity matrix.This matrix equation represents a set of homogenous equations, thus we know that a non-trivial solution exists if the determinant of (LI-A) is equal to zero. The polynomial equal to the expansion of this determinant is called the characteristic equation of A, from which we find the eigenvalues and thus the eigenvectors.

KD
Answered by Kedar D. Further Mathematics tutor

3282 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning