explain the eigenvalue problem

The eigenvalue problem is how we can find non-trivial solutions where x does not equal zero to the matrix equation;AX=LX (L=lambda)Values of the scalar L for which non-trivial solutions exist are called eigenvalues and the corresponding solutions of X where X does not equal 0 are called eigenvectors. A is an nn matrix.X is an n1 column vector.
We can write the above matrix equation, which represents the set of simultaneous equations as;(LI-A)X=0Where I is the identity matrix.This matrix equation represents a set of homogenous equations, thus we know that a non-trivial solution exists if the determinant of (LI-A) is equal to zero. The polynomial equal to the expansion of this determinant is called the characteristic equation of A, from which we find the eigenvalues and thus the eigenvectors.

KD
Answered by Kedar D. Further Mathematics tutor

2470 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

MEI (OCR) M4 June 2006 Q3


Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences