explain the eigenvalue problem

The eigenvalue problem is how we can find non-trivial solutions where x does not equal zero to the matrix equation;AX=LX (L=lambda)Values of the scalar L for which non-trivial solutions exist are called eigenvalues and the corresponding solutions of X where X does not equal 0 are called eigenvectors. A is an nn matrix.X is an n1 column vector.
We can write the above matrix equation, which represents the set of simultaneous equations as;(LI-A)X=0Where I is the identity matrix.This matrix equation represents a set of homogenous equations, thus we know that a non-trivial solution exists if the determinant of (LI-A) is equal to zero. The polynomial equal to the expansion of this determinant is called the characteristic equation of A, from which we find the eigenvalues and thus the eigenvectors.

KD
Answered by Kedar D. Further Mathematics tutor

2650 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the general solution of a second order differential equation?


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences