Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.

  1. Prove the base caseFor n=0, f(0)= 2 + 15 = 17Therefore, when n=0, f(n) is divisible by 17, base case is true2. Assume true for any integerAssume for n=k, f(k) is divisible by 17f(k)= 23k+1 + 3(52k+1) ;3. Work out function for the next integerf(k+1) = 23k+4 + 3(52k+3) = 8(23k+1 + 3(52k+1)) + 25552k255 = 1517, therefore the second term is divisible by 1723k+1 + 3(52k+1) = f(k), so if f(k) is divisible by 17, f(k+1) is divisible by 17.Since f(0) is divisible by 17, and if f(k) is divisible by 17, then f(k+1) is divisible by 17, then f(n) is divisible by 17 for all positive integers.
SE
Answered by Salma E. Further Mathematics tutor

3272 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning