Find and describe the stationary points of the curve y = x^2 + 2x - 8

Stationary points occur when the derivative is = 0Derivative: 2x + 2 = 0, so a stationary point occurs when x = -1y = 1 + 2 - 8 = -5Second derivative = 2Therefore, the stationary point (-1,2) is a minimum

MN
Answered by Martha N. Further Mathematics tutor

2198 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


How to solve the inequality 1 - 2(x - 3) > 4x


Work out the coordinates for the stationary point of y = x^2 + 3x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning