Find and describe the stationary points of the curve y = x^2 + 2x - 8

Stationary points occur when the derivative is = 0Derivative: 2x + 2 = 0, so a stationary point occurs when x = -1y = 1 + 2 - 8 = -5Second derivative = 2Therefore, the stationary point (-1,2) is a minimum

MN
Answered by Martha N. Further Mathematics tutor

1813 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Solve the following simultanious equations: zy=28 and 2z-3y=13


Find any stationary points in the function f(x) = 3x^2 + 2x


Work out 7/(2x^2) + 4/3x as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences