Find and describe the stationary points of the curve y = x^2 + 2x - 8

Stationary points occur when the derivative is = 0Derivative: 2x + 2 = 0, so a stationary point occurs when x = -1y = 1 + 2 - 8 = -5Second derivative = 2Therefore, the stationary point (-1,2) is a minimum

MN
Answered by Martha N. Further Mathematics tutor

2197 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Work out the coordinates for the stationary point of y = x^2 + 3x + 4


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


Differentiate y = x*cos(2x)


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning