Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2

It can first be observed that this differential equation is linear, so we can solve it by multiplying the whole equation by the integrating factor. As there is no coefficient in front of the dy/dx term, we do not have to do anything to the equation before finding the integrating factor. The integrating factor is exp( integral (2/y) dx). From core maths we can solve this; the integral gives 2 ln (x). 2 ln (x) is equal to ln (x^2) using the rules of exponentials. exp ( ln(x^2) ) is x^2 and so the integrating factor is x^2.
We then multiply the equation by the integrating factor, x^2, to get x^2*(dy/dx) + 2xy = x^2(3x+2). We can recognise the left hand side as the product rule and so we can express the equation as: d(x^2y)/dx = 3x^3 + 2x^2. This is now separable and so we can use techniques learned from the maths a level to give: x^2y = 0.75x^4 + (2/3)x^3 + c, making sure to add the + c as it is the constant of integration. Dividing through by x^2 we get y = 0.75x^2 + 2x/3 + c/x^2. This is the general solution to the differential equation.

VG
Answered by Veer G. Further Mathematics tutor

5186 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to approximate the Binomial distribution to the Normal Distribution


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Find the nth roots of unity.


For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences