Integrate ln(x) with respect to x.

Here we can use integration by parts. Notice that ln(x) can be written as ln(x)1, so we can integrate 1 and differentiate ln(x).
Then using the formula int(u
v') dx = uv - int(u'v) dx, we find that the integral of ln(x) is xln(x) - int(1/x * x) dx = xln(x) - int(1) dx = xln(x) - x + c, where c is a constant of integration.

TW
Answered by Tim W. Further Mathematics tutor

3780 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I solve x^2 + x - 6 > 0 ?


Cube roots of 8?


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning