Integrate ln(x) with respect to x.

Here we can use integration by parts. Notice that ln(x) can be written as ln(x)1, so we can integrate 1 and differentiate ln(x).
Then using the formula int(u
v') dx = uv - int(u'v) dx, we find that the integral of ln(x) is xln(x) - int(1/x * x) dx = xln(x) - int(1) dx = xln(x) - x + c, where c is a constant of integration.

TW
Answered by Tim W. Further Mathematics tutor

3123 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences