Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)

A point a is a stationary point if and only if f'(a) = 0.
Let's compute the derivative:
f'(x) = (2x^3 − kx^2 + 2x − k)' = 6x^2 - 2kx + 2.  (-k is a constant so it cancells out)
f'(x) = 0 iff 6x^2 -2kx + 2 = 0
We want the equation above to have two different real roots. These exist if and only if the discriminant is strictly positive, i.e. :
(-2k)^2 - 462 > 0
4k^2 > 4*12
k^2 > 12
|k| > 2√3
Hence, our solution is: k > 2√3 or k < -2√3 

JG
Answered by Jan G. MAT tutor

6312 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Circle the correct letter: The equation x^3 - 30x^2 + 108x - 104 = 0 has a) No real roots; b) Exactly one real root; c) Three distinct real roots; d) A repeated root.


How do you solve hard integration questions using information you know


How many 0's are at the end of 100! (100 factorial)?


The sequence xn is given by the formula x_n = n^3 − 9n^2 + 631. What is the largest value of n for which x_n > x_(n+1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning