Solve x^2+8x-5=0 using completing the square

by completing the square we write the equation as (x+b/2)^2-b/2^2+c, in this case b=8 (the coefficient of x) and c=5 so we have (x+4)^2-16-5=0, which equals (x+4)^2-21=0. Now by rearranging we get (x+4)^2=21, which goes to x+4=+or-sqrt(21). Therefore x=sgrt21 -4 or x=-sqrt21 -4

LH
Answered by Lucy H. Further Mathematics tutor

2471 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


Whats the derivative of sin(3x)?


a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning