Differentiate: y=x^x

First take log’s each side as it would turn our complicated function into something differentiable by chain rule.
ln y = x*ln x
Then differentiate y with respect to x:
d(ln y)/dx = ln x + 1
1/y * dy/dx = ln x +1
dy/dx = y(ln x +1)
As we know what y is the final result is dy/dx= x^x(ln x +1)

MV
Answered by Mihai V. Further Mathematics tutor

2126 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


Find the modulus and argument of the complex number 1+2i


How can the integrating factor method be derived to give a solution to a differential equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences