Differentiate: y=x^x

First take log’s each side as it would turn our complicated function into something differentiable by chain rule.
ln y = x*ln x
Then differentiate y with respect to x:
d(ln y)/dx = ln x + 1
1/y * dy/dx = ln x +1
dy/dx = y(ln x +1)
As we know what y is the final result is dy/dx= x^x(ln x +1)

MV
Answered by Mihai V. Further Mathematics tutor

2585 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


Are we able to represent linear matrix transformations with complex numbers?


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning