A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2

The first step is to calculate the initial energy of the system. at the moment of throwing. Energy is comprised of both potential (given by Mgh) and kinetic(given by 0.5Mv^2), and so the initial energy is : Mg(10) +1/2 * M * (10)^2 = 150M, where M is mass of the ball and h is its height.As energy is conserved, the energy at the instant of bouncing is the same, so we multiply by 0.9 to get the energy at the start of the next cycle. Again, due to conservation of energy, the highest point is given by the instant when this energy is all converted into potential energy, giving: MgH = 0.9 * 150M , which gives H = 13.5m. Important to note here is that this is the highest point in any of the subsequent cycles, as the total energy in the system can never exceed this value, and as 13.5m > 10m, the answer is 13.5m

RJ
Answered by Russell J. Physics tutor

1631 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An atom can become excited by the absorption of photons. Explain why only photons of certain frequencies cause excitation in a particular atom.


Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


What is the Photoelectric effect?


How can you tell if a reaction will happen?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning