When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?

This problem can be solved by first considering the energy of a photon e = hf. ​A photon of red light lacks the sufficient energy to free an electron. However a photon of blue light has a higher frequency and thus has a higher energy. This allows for a photon of blue light to free an electron and thus allow for a current to flow when a large number of photons are sent towards the metal.

JP
Answered by Jonathan P. Physics tutor

5433 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Name an experiment proving that light is wave and one that is proving that light consists of particles.


By considering Newton's second law and his law of gravitation, derive an expression for gravitational field strength g in terms of its mass, m, the distance from its center of mass, r, and the gravitational constant, G.


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


Using Fermat's Principle explain why it makes sense for light be refracted when crossing from one medium into another that has a different refractive index.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences