When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?

This problem can be solved by first considering the energy of a photon e = hf. ​A photon of red light lacks the sufficient energy to free an electron. However a photon of blue light has a higher frequency and thus has a higher energy. This allows for a photon of blue light to free an electron and thus allow for a current to flow when a large number of photons are sent towards the metal.

JP
Answered by Jonathan P. Physics tutor

6254 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?


A man weighing 600N steps on a scale that contains a spring. The spring is compressed 1cm under their weight. Find the force constant of the spring and total work done on its compression.


What is the root mean square voltage of an alternating current?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning