When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?

This problem can be solved by first considering the energy of a photon e = hf. ​A photon of red light lacks the sufficient energy to free an electron. However a photon of blue light has a higher frequency and thus has a higher energy. This allows for a photon of blue light to free an electron and thus allow for a current to flow when a large number of photons are sent towards the metal.

Answered by Jonathan P. Physics tutor

4029 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?


An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1


Explain Rutherford's atomic model experiment


Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy