If the highest frequency a song is 10 kHz and it is encoded at 16 bits per sample what is the minimum number of bytes needed to encode the 3 minute song?

The key to this question is to remember the Nyquist rate of a signal. This is the lowest sample rate which can be used for a signal without losing valid frequencies or gaining incorrect frequencies. This is equal to twice the highest frequency.

Therefore the sample rate needs to be 20 kHz. Since there are 16 bits per sample the number of bits per second is 16 multiplied by 20 000 which is 320 000 bits per second.

To calculate the number of bits in 3 minutes we need to multiply 320 000 by the number of seconds in 3 minutes. Which gives:
320 000 x 3 x 60 = 57 600 000 bits 

Remember to divide by 8 to get it in bytes, since there are 8 bits in a byte. This finally gives:
57 600 000/8 = 7 200 000 bytes = 7.2 Megabytes

DM
Answered by David M. Physics tutor

6042 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A piece of card is released from rest at a height of 0.5m above a light gate. It falls freely and a computer measures the velocity as it passes through the light gate to be 3.10m/s. What is the acceleration due to gravity measured by this experiment?


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


Light with a frequency of 200nm is shone on a sodium plate with a work function of 2.28eV and electrons start escaping the surface of the plate due to the photoelectric effect. What is the maximum kinetic energy of one of these electrons in eV?


Bismuth-208, which has an atomic mass of 208u and 83 protons in the nucleus, decays through the emission of 2 alpha particles and a beta-positive particle. What isotope results from this decay?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences