Sketch the locus of z on an Argand diagram if arg[(z-5)/(z-3)] = π/6

Rewrite as arg(z-5) - arg(z-3) = π/6 and let arg(z-5) = b and arg(z-3) = a, so that b-a = π/6Since we know that each argument makes a half line (starting at (3,0) for angle a, (5,0) for angle b) the half lines must intersect at a point P which is on the locus of z. The angle formed by this intersection must be equal to b-a = π/6 since the exterior angle in a triangle (in this case b) is equal to the sum of the interior angles (in this case a and π/6).We know from circle theorems that the angles subtended at the circumference in the same segment are always equal. Hence we can deduce that since the angle formed by the intersection is constant (equal to π/6) as b and a both vary, the locus of z must be an arc of a circle from x=3 to x=5 for y>0 (since the angle is positive).

FA
Answered by Faris A. Further Mathematics tutor

4814 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


How do I find the asymptotes of a curve?


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences