Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

DD
Answered by Dojcin D. Physics tutor

7476 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


How do I approach this question? Our teacher never explained it in class!


What is a potential divider?


An unknown capacitor is charged to 6v, its maximum value, then discharged through a 1k ohm resistor. If the capacitor voltage is 3v, 0.3 seconds after starting to discharge, what is the capacitance of the unknown capacitor?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning