Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

DD
Answered by Dojcin D. Physics tutor

7319 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can we derive the 'suvat' equations of motion v=u+at and s=(u+v)t/2


How would you calculate the vertical and horizontal components of the velocity of an object with an initial velocity of 15m/s which is travelling upwards at an angle of 30 degrees to the horizontal?


In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?


Explain the change of quark character associated with the beta-plus decay and deduce the equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning