Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

DD
Answered by Dojcin D. Physics tutor

7351 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a bulb has a current of 20mA and voltage of 5V, and the current cost of electricity is £3 for a kW/hour. How much money would you spend to power the bulb for 8 hours? Are these good estimates for the current, voltage and cost of electricity?


What does the double slit experiment tell us about light?


What is the photoelectric effect and how does it provide evidence for the quantisation of electromagnetic radiation?


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning