Find the general solution to f''(x)+ 3f'(x)+ 2f(x)=0

Firstly, I haven't seen the notation I used in alevel but I just used it for the sake of ease of typing it online.1st. Sub in the trial solution f(x)= Ae^(mx) and its derivatives- f'(x)= Ame^(mx) and f''(x)= Am^(2)e^(mx). Simplify by dividing by Ae^(mx) to get m^2+ 3m + 2= 0.Solve the quadratic by inspection to the solutions m=1 and m=2. Since when each solution is substituted into the original differential the result =0 we can say that the sum of the solutions is correct. (0+0=0). So the solution is f(x)= Ae^x +Be^2x

JD
Answered by John D. Further Mathematics tutor

3995 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning