Find the general solution to f''(x)+ 3f'(x)+ 2f(x)=0

Firstly, I haven't seen the notation I used in alevel but I just used it for the sake of ease of typing it online.1st. Sub in the trial solution f(x)= Ae^(mx) and its derivatives- f'(x)= Ame^(mx) and f''(x)= Am^(2)e^(mx). Simplify by dividing by Ae^(mx) to get m^2+ 3m + 2= 0.Solve the quadratic by inspection to the solutions m=1 and m=2. Since when each solution is substituted into the original differential the result =0 we can say that the sum of the solutions is correct. (0+0=0). So the solution is f(x)= Ae^x +Be^2x

JD
Answered by John D. Further Mathematics tutor

4022 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to y'' - 3y' + 2y = 4x


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning