Find the general solution to f''(x)+ 3f'(x)+ 2f(x)=0

Firstly, I haven't seen the notation I used in alevel but I just used it for the sake of ease of typing it online.1st. Sub in the trial solution f(x)= Ae^(mx) and its derivatives- f'(x)= Ame^(mx) and f''(x)= Am^(2)e^(mx). Simplify by dividing by Ae^(mx) to get m^2+ 3m + 2= 0.Solve the quadratic by inspection to the solutions m=1 and m=2. Since when each solution is substituted into the original differential the result =0 we can say that the sum of the solutions is correct. (0+0=0). So the solution is f(x)= Ae^x +Be^2x

JD
Answered by John D. Further Mathematics tutor

4149 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


How do I use proof by induction?


A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning