How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?

We can see that 104 = 2^3 * 13 = 2226, 30 = 2 + 2 + 26, and 108 = 22 + 226 + 2*26, so the coefficients agree with the Vieta's formulas, so the roots of the equation above are 2, 2, 26. In conclusion, it has 2 distinct real roots. 

Alternatively, we can try to factorise the polynomial. This can be done by (x-2)^2*(x-26), and so we can see that the equation has 2 distinct real roots. 

AI
Answered by Andreea I. MAT tutor

9472 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Why does sum(1/n) diverge but sum(1/n^2) converge?


How many solutions does the equation 2sin^2(x) - 4sin(x) + cos^2(x) + 2 = 0 have in the domain 0<x<2pi


What is the square root of the imaginary number i?


How would I go about graph sketching?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences