differentiate arsinh(cosx))

let's start by defining y = arsinh(cos(x)). taking sinh of both sides gives sinhy = cosx. (since sinh(arsinhz) = z). Now we can differentiate both sides wrt x. The RHS differentiates to -sinx. We can use the chain rule for the LHS: d/dx = dy/dx *d/dy.so d/dx(sinhy) = dy/dx d/dy(sinhy) = dy/dx coshy. so dy/dx = -sinx/coshy. Now coshy = sqrt(1+(sinhy)^2) = sqrt(1+(cosx)^2).So dy/dx = -sinx/sqrt(1+(cosx)^2).

AB
Answered by Amit B. Further Mathematics tutor

2367 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I solve a simultaneous equation with more unknowns than equations?


Integrate cos(log(x)) dx


Find values of x which satisfy the inequality: x^2-4x-2<10


In statistics, what is the benefit of taking a sample survey rather than a census?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning