differentiate arsinh(cosx))

let's start by defining y = arsinh(cos(x)). taking sinh of both sides gives sinhy = cosx. (since sinh(arsinhz) = z). Now we can differentiate both sides wrt x. The RHS differentiates to -sinx. We can use the chain rule for the LHS: d/dx = dy/dx *d/dy.so d/dx(sinhy) = dy/dx d/dy(sinhy) = dy/dx coshy. so dy/dx = -sinx/coshy. Now coshy = sqrt(1+(sinhy)^2) = sqrt(1+(cosx)^2).So dy/dx = -sinx/sqrt(1+(cosx)^2).

AB
Answered by Amit B. Further Mathematics tutor

2222 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?


Solve this equation: x^2 + 2x + 2


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


find all the roots to the equation: z^3 = 1 + i in polar form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning