Why does a skydiver go through two different terminal velocities?

When the skydiver jumps out, they are instantaneously at free fall (accelerate at 9.81 m/s). After this, a drag force from the displacement of air is felt. The drag force is proportional to the velocity squared. As the skydiver's velocity continues to increase, this drag force gets larger and larger, and the acceleration decreases. After a certain amount of time, the force from air resistance is equal to the force due to gravity. At this point, there is no resultant force and therefore no acceleration and the first terminal velocity is reached.
After the skydiver opens their parachute, the surface area exposed to the air is greatly increased. The drag force is then much larger than the gravitational force, so the skydiver decelerates. Decrease in velocity decreases air resistance, and a second much slower terminal velocity is reached once the forces are again equal.

SS
Answered by Saajan S. Physics tutor

8236 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A water jet starts at a point X and reaches its maximum height at a point Y. Air resistance has a negligible effect on the motion of the water jet. (i) State the direction of the force acting on the jet at Y. (1 mark)


What is an inertial frame of reference?


State what is meant by a Doppler shift and describe how it was used to study the movement of galaxies.


Why does gravitational potential energy have a negative value?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences