Why does a skydiver go through two different terminal velocities?

When the skydiver jumps out, they are instantaneously at free fall (accelerate at 9.81 m/s). After this, a drag force from the displacement of air is felt. The drag force is proportional to the velocity squared. As the skydiver's velocity continues to increase, this drag force gets larger and larger, and the acceleration decreases. After a certain amount of time, the force from air resistance is equal to the force due to gravity. At this point, there is no resultant force and therefore no acceleration and the first terminal velocity is reached.
After the skydiver opens their parachute, the surface area exposed to the air is greatly increased. The drag force is then much larger than the gravitational force, so the skydiver decelerates. Decrease in velocity decreases air resistance, and a second much slower terminal velocity is reached once the forces are again equal.

SS
Answered by Saajan S. Physics tutor

9351 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A diver of mass 60kg stands on the end of a diving board of length 2m from the pivot point. Calculate the upward force exerted on the retaining spring 30cm from the pivot point.


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


What does the photoelectric effect demonstrate?


What is the total energy of a spaceship of mass m, orbiting a planet of mass M in a circular orbit with radius r? The ship and the planet are taken to be an isolated system.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning