Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.

The photoelectric effect is the emission of electrons from a metal surface when light is incident on it. When a photon (a light particle) hits the metal surface, it interacts with the metal's electrons. The energy of the photon is absorbed by the electron and if the energy is larger than some threshold energy ( the metal's work function) then the electron has enough energy to escape the metal's surface. Because this interaction is one to one, only the photon energy will determine the kinetic energy of the emmited electrons. The intensity of the light (determined by the number of photons) will not affect the kinetic energy of the electrons, only the number of electrons emmited. This means that low energy light (longer wavelengths) may not cause a metal to emmit electrons even if the intensity is very high, while high energy light (shorter wavelengths) could cause a metal to emmit electrons even if the intensity low.

JL
Answered by Jaime L. Physics tutor

3359 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the resistance of a uniform wire of diameter 0.5mm, length 2m and resistivity 1.7x10^-8Ωm.


State Faraday's Law of electromagnetic induction, both qualitatively and quantitatively. How is Lenz's Law included in this? (4 marks)


How can I describe the motion of an object falling, due to gravity, through a fluid? And when does the object reach terminal velocity?


The vehicle accelerates horizontally from rest to 27.8 m s–1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider has a mass of 82 kg. 1. Calculate the average acceleration during the 4.6 s time interval.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning