Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))

Have a picture of full working with annotation to go through during interview.Here is rough outline:y = cosh-1(x)x = cosh(y)x = (ey+e-y)/22x = ey+e-yey+e-y -2x = 0Turn into hidden quadratic by multiplying by eye2y-2xey+1=0By quadratic formula:ey = x +/- sqrt(x2-1)Take positive root in order to make inverse function 1 to 1.y = ln(x + sqrt(x2-1)

MW
Answered by Max W. Further Mathematics tutor

4483 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


How do I solve a simultaneous equation with more unknowns than equations?


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning