Given M = [[-2,6],[1,3]], find P and D such that M = PDP^(-1) where D is a diagonal matrix

We are given M = [[-2,6],[1,3]], with columns [-2,6] and [1,3]. To find P and D, eigenvalues and eigenvectors must be calculated, as D is defined to be the matrix whose diagonal is comprised of the eigenvalues of M in some order, and P is the matrix of eigenvectors corresponding to the eigenvalues order. We know if e is an eigenvalue and v is an eigenvector, Mv = ev, so Mv - ev = 0 vector, and (M-eI)v = 0 vector, where I is the identity matrix. M-eI has to have determinant 0, so we can solve this equation allowing e to be an unknown variable. by solving for e we obtain e = 4,-3. Returning to the previous equation, (M-eI)v = 0 vector, all that needs to be done is find v for each e. substitute e in the equation, and one can solve for v. To finish, D would be [[4,0],[0,-3]] and P would be [[1,6],[-1,1]]

HR
Answered by Hugo R. Further Mathematics tutor

2729 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Prove by induction that n^3+5n is divisible by 3 for every natural number.


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Find the modulus and argument of the complex number 1+2i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences