The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.

Note the simplest relation to eliminate t is the fact cos2(t)+sin2(t)=1 for all t, so we need only find x and y in terms of cos(t) and sin(t).Note we have sin(t)=-(y+1) from the equation for y already.From the equation for x, x=cos(t)+1/2sin(2t). The key step is to use the double angle formulae to express sin(2t) in terms of sin(t) and cos(t). sin(2t)=2sin(t)*cos(t) gives x=cos(t)+sin(t)cos(t) = cos(t)(1+sin(t)). We recognise 1+sin(t)=-y and so x=-ycos(t) gives cos(t)=-(x/y).Then cos2(t)+sin2(t)=1 for all t => (-x/y)^2+(-y-1)^2=1 => x^2/y^2 = -y^2-2y => x^2=-(y^4+2y^3).
The volume of the pendant is calculated from the formulae π∫x^2 dy from y = 0 -> y = -2 (from sketch), calculated with above expression for x^2.

LP
Answered by Luke P. Further Mathematics tutor

5085 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the inequality x^3 + x^2 > 6x


How do I express complex numbers in the form reiθ?


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


Integrate x^2sin(x) between -pi and pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning