The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.

Note the simplest relation to eliminate t is the fact cos2(t)+sin2(t)=1 for all t, so we need only find x and y in terms of cos(t) and sin(t).Note we have sin(t)=-(y+1) from the equation for y already.From the equation for x, x=cos(t)+1/2sin(2t). The key step is to use the double angle formulae to express sin(2t) in terms of sin(t) and cos(t). sin(2t)=2sin(t)*cos(t) gives x=cos(t)+sin(t)cos(t) = cos(t)(1+sin(t)). We recognise 1+sin(t)=-y and so x=-ycos(t) gives cos(t)=-(x/y).Then cos2(t)+sin2(t)=1 for all t => (-x/y)^2+(-y-1)^2=1 => x^2/y^2 = -y^2-2y => x^2=-(y^4+2y^3).
The volume of the pendant is calculated from the formulae π∫x^2 dy from y = 0 -> y = -2 (from sketch), calculated with above expression for x^2.

LP
Answered by Luke P. Further Mathematics tutor

5073 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning