Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication

We must show that the set satisfies the group requirements: Identity, Closure, Associativity and Invertibility.Identity: Contains identity matrixAssociativity: Follows from the rules of matrix multiplicationInvertibility: As none of the diagonal elements are non zero, if the reciprocal of each diagonal element is taken, the inverse can be obtainedClosure: Can show by example of multiplying two general matrices

NP
Answered by Nishil P. Further Mathematics tutor

2281 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


How do I know when I should be using the Poisson distribution?


Can you show me how to solve first order differential equations using the integrating factor method?


Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences