Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

5 = 5(cos(x)^2 + sin(x)^2) = 5cos(x)^2 + 5sin(x)^2=> 5 - 5cos(x)^2 = 5sin(x)^2=> sin(x)^2 + 5 - 5cos(x)^2 = 6sin(x)^2=> sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

NT
Answered by Nicholas T. Further Mathematics tutor

2259 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).


Make y the subject of the formula x = SQRT((y+1)/(y-2))


write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning