Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

5 = 5(cos(x)^2 + sin(x)^2) = 5cos(x)^2 + 5sin(x)^2=> 5 - 5cos(x)^2 = 5sin(x)^2=> sin(x)^2 + 5 - 5cos(x)^2 = 6sin(x)^2=> sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

NT
Answered by Nicholas T. Further Mathematics tutor

2252 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

In a chess club there are x boys and y girls. If ten more boys join and one more girl joins, there is an equal amount of boys and girls. Knowing that y = 2x+2, Calculate x and y. [4 marks]


How many different ways are there to seat 6 people at a round table?


Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


Find the solution of 3^{4x} = 9^{(x-1)/2}.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning