Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

5 = 5(cos(x)^2 + sin(x)^2) = 5cos(x)^2 + 5sin(x)^2=> 5 - 5cos(x)^2 = 5sin(x)^2=> sin(x)^2 + 5 - 5cos(x)^2 = 6sin(x)^2=> sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

NT
Answered by Nicholas T. Further Mathematics tutor

1989 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solving equations with unknown in both sides


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


If z=4+i, what is 1/z? (in the form a+bi)


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences