Solve these simultaneous equations: 3xy = 1, and y = 12x + 3

From first equation: 3xy = 1 => x = 1/(3y)Substitute expression for x into second equation: y = 12x + 3 => y = 12(1/3y) + 3 = 4/y +3Multiply through by y: y2 = 4 + 3y => y2 - 3y - 4 = 0Factorise: (y-4)(y+1) = 0 => y = 4, y = -1 are solutionsx = 1/3y = 1/12, -1/3
Solutions are (1/12,4) and (-1/3, -1)

HM
Answered by Hallam M. Further Mathematics tutor

2752 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

What is the range of solutions for the inequality 2(3x+1) > 3-4x?


What is the equation of a circle with centre (3,4) and radius 4?


A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.


Given f(x)= 8 − x^2, solve f(3x) = -28


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning