Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)

In order to do this we must follow the standard procedure for a proof by induction which is to first check a base case:Let n = 1, then the sum can be written as 12 = 1/6(1+1)(2+1) = 1 as required.
Next, assume through this check that the assumption holds for some n = k. (Where the assumption is that the sum of squared natural numbers up to n is equal to n/6(n+1)(2n+1)).
Finally, let n = k + 1 and try to show the assumption is still valid. By showing this is the case for an arbitrary n = k we can see that it will hold for all n in the natural numbers:Would show this on the whiteboard as it is a lot of numbers to type, but it works.

TD
Answered by Tutor156882 D. Further Mathematics tutor

5117 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences