Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)

In order to do this we must follow the standard procedure for a proof by induction which is to first check a base case:Let n = 1, then the sum can be written as 12 = 1/6(1+1)(2+1) = 1 as required.
Next, assume through this check that the assumption holds for some n = k. (Where the assumption is that the sum of squared natural numbers up to n is equal to n/6(n+1)(2n+1)).
Finally, let n = k + 1 and try to show the assumption is still valid. By showing this is the case for an arbitrary n = k we can see that it will hold for all n in the natural numbers:Would show this on the whiteboard as it is a lot of numbers to type, but it works.

TD
Answered by Tutor156882 D. Further Mathematics tutor

5763 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning